\(\int F^{c (a+b x)} \csc ^n(d+e x) \, dx\) [27]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 18, antiderivative size = 102 \[ \int F^{c (a+b x)} \csc ^n(d+e x) \, dx=-\frac {\left (1-e^{-2 i (d+e x)}\right )^n F^{a c+b c x} \csc ^n(d+e x) \operatorname {Hypergeometric2F1}\left (n,\frac {e n+i b c \log (F)}{2 e},\frac {1}{2} \left (2+n+\frac {i b c \log (F)}{e}\right ),e^{-2 i (d+e x)}\right )}{i e n-b c \log (F)} \]

[Out]

-(1-1/exp(2*I*(e*x+d)))^n*F^(b*c*x+a*c)*csc(e*x+d)^n*hypergeom([n, 1/2*(I*b*c*ln(F)+e*n)/e],[1+1/2*n+1/2*I*b*c
*ln(F)/e],exp(-2*I*(e*x+d)))/(I*e*n-b*c*ln(F))

Rubi [A] (verified)

Time = 0.26 (sec) , antiderivative size = 102, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {4540, 2291} \[ \int F^{c (a+b x)} \csc ^n(d+e x) \, dx=-\frac {\left (1-e^{-2 i (d+e x)}\right )^n F^{a c+b c x} \csc ^n(d+e x) \operatorname {Hypergeometric2F1}\left (n,\frac {e n+i b c \log (F)}{2 e},\frac {1}{2} \left (n+\frac {i b c \log (F)}{e}+2\right ),e^{-2 i (d+e x)}\right )}{-b c \log (F)+i e n} \]

[In]

Int[F^(c*(a + b*x))*Csc[d + e*x]^n,x]

[Out]

-(((1 - E^((-2*I)*(d + e*x)))^n*F^(a*c + b*c*x)*Csc[d + e*x]^n*Hypergeometric2F1[n, (e*n + I*b*c*Log[F])/(2*e)
, (2 + n + (I*b*c*Log[F])/e)/2, E^((-2*I)*(d + e*x))])/(I*e*n - b*c*Log[F]))

Rule 2291

Int[((a_) + (b_.)*(F_)^((e_.)*((c_.) + (d_.)*(x_))))^(p_)*(G_)^((h_.)*((f_.) + (g_.)*(x_)))*(H_)^((t_.)*((r_.)
 + (s_.)*(x_))), x_Symbol] :> Simp[G^(h*(f + g*x))*H^(t*(r + s*x))*((a + b*F^(e*(c + d*x)))^p/((g*h*Log[G] + s
*t*Log[H])*((a + b*F^(e*(c + d*x)))/a)^p))*Hypergeometric2F1[-p, (g*h*Log[G] + s*t*Log[H])/(d*e*Log[F]), (g*h*
Log[G] + s*t*Log[H])/(d*e*Log[F]) + 1, Simplify[(-b/a)*F^(e*(c + d*x))]], x] /; FreeQ[{F, G, H, a, b, c, d, e,
 f, g, h, r, s, t, p}, x] &&  !IntegerQ[p]

Rule 4540

Int[Csc[(d_.) + (e_.)*(x_)]^(n_.)*(F_)^((c_.)*((a_.) + (b_.)*(x_))), x_Symbol] :> Dist[(1 - E^(-2*I*(d + e*x))
)^n*(Csc[d + e*x]^n/E^((-I)*n*(d + e*x))), Int[SimplifyIntegrand[F^(c*(a + b*x))*(1/(E^(I*n*(d + e*x))*(1 - E^
(-2*I*(d + e*x)))^n)), x], x], x] /; FreeQ[{F, a, b, c, d, e}, x] &&  !IntegerQ[n]

Rubi steps \begin{align*} \text {integral}& = \left (e^{i n (d+e x)} \left (1-e^{-2 i (d+e x)}\right )^n \csc ^n(d+e x)\right ) \int e^{-i d n-i e n x} \left (1-e^{-2 i (d+e x)}\right )^{-n} F^{a c+b c x} \, dx \\ & = -\frac {\left (1-e^{-2 i (d+e x)}\right )^n F^{a c+b c x} \csc ^n(d+e x) \operatorname {Hypergeometric2F1}\left (n,\frac {e n+i b c \log (F)}{2 e},\frac {1}{2} \left (2+n+\frac {i b c \log (F)}{e}\right ),e^{-2 i (d+e x)}\right )}{i e n-b c \log (F)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.11 (sec) , antiderivative size = 102, normalized size of antiderivative = 1.00 \[ \int F^{c (a+b x)} \csc ^n(d+e x) \, dx=\frac {i \left (1-e^{-2 i (d+e x)}\right )^n F^{c (a+b x)} \csc ^n(d+e x) \operatorname {Hypergeometric2F1}\left (n,\frac {e n+i b c \log (F)}{2 e},\frac {1}{2} \left (2+n+\frac {i b c \log (F)}{e}\right ),e^{-2 i (d+e x)}\right )}{e n+i b c \log (F)} \]

[In]

Integrate[F^(c*(a + b*x))*Csc[d + e*x]^n,x]

[Out]

(I*(1 - E^((-2*I)*(d + e*x)))^n*F^(c*(a + b*x))*Csc[d + e*x]^n*Hypergeometric2F1[n, (e*n + I*b*c*Log[F])/(2*e)
, (2 + n + (I*b*c*Log[F])/e)/2, E^((-2*I)*(d + e*x))])/(e*n + I*b*c*Log[F])

Maple [F]

\[\int F^{c \left (x b +a \right )} \csc \left (e x +d \right )^{n}d x\]

[In]

int(F^(c*(b*x+a))*csc(e*x+d)^n,x)

[Out]

int(F^(c*(b*x+a))*csc(e*x+d)^n,x)

Fricas [F]

\[ \int F^{c (a+b x)} \csc ^n(d+e x) \, dx=\int { F^{{\left (b x + a\right )} c} \csc \left (e x + d\right )^{n} \,d x } \]

[In]

integrate(F^(c*(b*x+a))*csc(e*x+d)^n,x, algorithm="fricas")

[Out]

integral(F^(b*c*x + a*c)*csc(e*x + d)^n, x)

Sympy [F]

\[ \int F^{c (a+b x)} \csc ^n(d+e x) \, dx=\int F^{c \left (a + b x\right )} \csc ^{n}{\left (d + e x \right )}\, dx \]

[In]

integrate(F**(c*(b*x+a))*csc(e*x+d)**n,x)

[Out]

Integral(F**(c*(a + b*x))*csc(d + e*x)**n, x)

Maxima [F]

\[ \int F^{c (a+b x)} \csc ^n(d+e x) \, dx=\int { F^{{\left (b x + a\right )} c} \csc \left (e x + d\right )^{n} \,d x } \]

[In]

integrate(F^(c*(b*x+a))*csc(e*x+d)^n,x, algorithm="maxima")

[Out]

integrate(F^((b*x + a)*c)*csc(e*x + d)^n, x)

Giac [F]

\[ \int F^{c (a+b x)} \csc ^n(d+e x) \, dx=\int { F^{{\left (b x + a\right )} c} \csc \left (e x + d\right )^{n} \,d x } \]

[In]

integrate(F^(c*(b*x+a))*csc(e*x+d)^n,x, algorithm="giac")

[Out]

integrate(F^((b*x + a)*c)*csc(e*x + d)^n, x)

Mupad [F(-1)]

Timed out. \[ \int F^{c (a+b x)} \csc ^n(d+e x) \, dx=\int F^{c\,\left (a+b\,x\right )}\,{\left (\frac {1}{\sin \left (d+e\,x\right )}\right )}^n \,d x \]

[In]

int(F^(c*(a + b*x))*(1/sin(d + e*x))^n,x)

[Out]

int(F^(c*(a + b*x))*(1/sin(d + e*x))^n, x)